CSCB20

SOLUTIONS:

List the appropriate primary keys for each table

TABLE	PRIMARY KEY(S)	
Branch	Branch name	
Customer	<u>Customer_name</u>	
Loan	<u>Loan_number</u>	
Borrower	Customer name, Loan_number	
Bank_Account	Account number	
Depositor	<u>Customer_name</u> , <u>Account_number</u>	

NOTE – remember to <u>underline</u> your primary keys (if you have a primary key that is also a foreign key,

Given your choice of primary keys, identify the appropriate foreign keys

TABLE	FOREIGN KEY(S)		
Branch	Branch_name		
Customer	Customer_name		
Loan	Loan_number		
Borrower	Customer_name		
Bank_Account	Branch_name		
Depositor	Customer_name		

NOTE – remember to use a dotted-underline for your foreign keys

Find the names of all branches located in 'Chicago'

 $\sigma_{\text{branch_city} = '\text{Chicago'}}(\text{branch})$

Find the names of all borrowers who have a loan branch in 'Down-town'

 $\pi_{loan_number,\,branch_name}((borrower\bowtie loan)\bowtie branch)$

Find all loan numbers with a loan value greater than \$10,000

$$\pi_{\text{loan_number}}(\sigma_{\text{amount}>10000}(\text{loan}))$$

Find the names of all depositors who have an account with a value greater than \$6000

$$\pi_{\text{customer_name}} \left(\sigma_{\text{bank_account.balance} > 6000} (\text{depositor} \bowtie \text{bank_account}) \right)$$

Indicate the attributes of each relation

The attributes of a relation are referring to the columns of the table

Accounts – acctNo, type, balance Customers – firstName, lastName, idNo, account

Indicate the tuples of each relation

The **tuples** of a relation are referring to the **rows** of the table

Accounts:

- (12345, savings, 12000)
- (23456, chequing, 1000)
- (34567, savings, 0)

Customers:

- (Eugene, Krabs, 420-699, 12345)
- (Pearl, Krabs, 805-123, 12345)
- (Pearl, Krabs, 805-123, 23456)

Indicate the components of one tuple from each relation:

Consider the tuple (Eugene, Krabs, 420-699, 12345) from the relation Customers:

firstName: Eugene
lastName: Krabs
idNo: 420-699
account: 12345

Indicate the relation schema for each relation:

Accounts – Accounts(acctNo, type, balance)

Customers – Customers(firstName, lastName, idNo, account)

Indicate the database schema:

Accounts(acctNo, type, balance)
Customers(firstName, lastName, idNo, account)

Indicate a suitable domain for each attribute:

Accounts:

acctNo: integertype: stringbalance: integer

Customers:

firstName: stringlastName: stringidNo: string

o This is only a string because there is a hyphen between the numbers

- account: integer

Indicate another equivalent way to present each relation:

Show another valid relation that matches the domain you stated above

For Accounts:

ACCOUNTS					
acctNo	type balance				
11111	savings	0			
22222	savings	1000000			
33333	chequing	42069			

For Customers:

CUSTOMERS					
firstName	lastName	idNo	account		
Alice	Allison	123-456	11111		
Bob	Boberto	234-567	22222		
Chad	Chadwick	345-456	33333		

What PC models have a speed of at least 3.00?

$$R1 \coloneqq \sigma_{\text{speed} \ge 3.00}(PC)$$

$$R2 \coloneqq \pi_{\text{model}}(R1)$$

Which manufacturers make laptops with a hard disk of at least 100 GB?

$$R1 \coloneqq \sigma_{hd \ge 100}(laptop)$$

$$R2 := R1 \bowtie Product$$

$$R3 \coloneqq \pi_{maker}(R2)$$

Find the model number and price of all products (of any type) made by manufacturer B

$$R1 \coloneqq \sigma_{maker=B}(Product \bowtie PC)$$

$$R2 := \sigma_{maker=B}(Product \bowtie Laptop)$$

$$R3 := \sigma_{maker=B}(Product \bowtie Printer)$$

$$R4 \coloneqq \pi_{model,price}(R1)$$

$$R5 \coloneqq \pi_{model,price}(R2)$$

$$R6 \coloneqq \pi_{model,price}(R3)$$

$$R7 := R4 \cup R5 \cup R6$$

Find the model numbers of all color laser printers

$$R1 := \sigma_{color=True \text{ AND } type=laser}(printer)$$

 $R2 := \pi_{model}(R1)$

Find those manufacturers that sell laptops but not PCs

 $R1 := \sigma_{type=laptop}(Product)$

 $R2 := \sigma_{type=PC}(Product)$

 $R3 \coloneqq \pi_{maker}(R1)$

 $R4 \coloneqq \pi_{maker}(R2)$

R5 := R3 - R4

Find those hard disk sizes that occur in two or more PCs

$$R1 \coloneqq \rho_{PC1}(PC)$$

$$R2 := \rho_{PC2}(PC)$$

$$R3 := R1 \bowtie_{PC1.hd=PC2.hd} \bowtie_{PC1.model <> PC2.model} (R2)$$

$$R4 \coloneqq \pi_{hd}(R3)$$

Find those pairs of PC models that have both the same speed and RAM. A pair should only be listed once (e.g. the list (i,j) but not the list (j,i))

$$R1 := \rho_{PC1}(PC)$$

$$R2 := \rho_{PC2}(PC)$$

$$R3 := R1 \bowtie_{PC1.speed = PC2.speed \text{ AND } PC1.ram = PC2.ram \text{ AND } PC1.model < PC2.model} (R2)$$

$$R4 \coloneqq \pi_{PC1.model,PC2.model}(R3)$$

Find those manufacturers of at least two different computers (PC's or laptops) with speeds of at least 2.80

$$R1 := \pi_{model} \left(\sigma_{speed \ge 2.80}(PC) \right) \cup \pi_{model} \left(\sigma_{speed \ge 2.80}(Laptop) \right)$$

$$R2 := \pi_{maker,model}(R1 \bowtie Product)$$

$$R3 := \rho_{R4}(model2, speed2)(R2)$$

$$R4 := R2 \bowtie_{maker = maker2 \text{ AND } model <> model2}}(R3)$$

$$R5 := \pi_{maker}(R4)$$

Find the manufacturer(s) of the computer (PC or laptop) with the highest speed

$$R1 \coloneqq \pi_{model,speed}(PC)$$

$$R2 \coloneqq \pi_{model,speed}(Laptop)$$

$$R3 \coloneqq R1 \cup R2$$

$$R4 \coloneqq \rho_{R4(model2,speed2)}(R3)$$

$$R5 \coloneqq \pi_{model,speed}(R3 \bowtie_{speed < speed2} R4)$$

$$R6 \coloneqq R3 - R5$$

$$R7 \coloneqq \pi_{maker}(R6 \bowtie Product)$$

Find the manufacturers of PCs with at least three different speeds

```
R1 \coloneqq \pi_{maker,speed}(Product \bowtie PC)
R2 \coloneqq \rho_{R2(maker2,speed2)}(R1)
R3 \coloneqq \rho_{R3(maker3,speed3)}(R1)
R4 \coloneqq R1 \bowtie_{maker=maker2 \text{ AND } speed <> speed2} (R2)
R5 \coloneqq R4 \bowtie_{maker=maker3 \text{ AND } speed <> speed3 \text{ AND } speed3 <> speed2} (R3)
R6 \coloneqq \pi_{maker}(R5)
```

Find the manufacturers who sell exactly three different models of PC

```
R1 \coloneqq \pi_{maker,model}(Product \bowtie PC)
R2 \coloneqq \rho_{R2(maker2,model2)}(R1)
R3 \coloneqq \rho_{R3(maker3,model3)}(R1)
R4 \coloneqq \rho_{R4(maker4,model4)}(R1)
R5 \coloneqq R1 \bowtie_{maker=maker2 \text{ AND } model <> model2}}(R2)
R6 \coloneqq R3 \bowtie_{maker=maker3 \text{ AND } model3 <> model2 \text{ AND } model3 <> model}}(R5)
R7 \coloneqq R4 \bowtie_{maker=maker4 \text{ AND } (model4=model \text{ OR } model4=model2 \text{ OR } model4=model3)}}(R6)
R8 \coloneqq \pi_{maker}(R7)
```